skip to main content


Search for: All records

Creators/Authors contains: "Speich, Sabrina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Since the inception of the international South Atlantic Meridional Overturning Circulation initiative in the 21st century, substantial advances have been made in observing and understanding the Southern Hemisphere component of the Atlantic Meridional Overturning Circulation (AMOC). Here we synthesize insights gained into overturning flows, interocean exchanges, and water mass distributions and pathways in the South Atlantic. The overturning circulation in the South Atlantic uniquely carries heat equatorward and exports freshwater poleward and consists of two strong overturning cells. Density and pressure gradients, winds, eddies, boundary currents, and interocean exchanges create an energetic circulation in the subtropical and tropical South Atlantic Ocean. The relative importance of these drivers varies with the observed latitude and time scale. AMOC, interocean exchanges, and climate changes drive ocean warming at all depths, upper ocean salinification, and freshening in the deep and abyssal ocean in the South Atlantic. Long-term sustained observations are critical to detect and understand these changes and their impacts. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract. In early 2020, an international team set out to investigatetrade-wind cumulus clouds and their coupling to the large-scale circulationthrough the field campaign EUREC4A: ElUcidating the RolE ofClouds-Circulation Coupling in ClimAte. Focused on the western tropicalAtlantic near Barbados, EUREC4A deployed a number of innovativeobservational strategies, including a large network of water isotopicmeasurements collectively known as EUREC4A-iso, to study the tropicalshallow convective environment. The goal of the isotopic measurements was toelucidate processes that regulate the hydroclimate state – for example, byidentifying moisture sources, quantifying mixing between atmospheric layers,characterizing the microphysics that influence the formation and persistenceof clouds and precipitation, and providing an extra constraint in theevaluation of numerical simulations. During the field experiment,researchers deployed seven water vapor isotopic analyzers on two aircraft,on three ships, and at the Barbados Cloud Observatory (BCO). Precipitationwas collected for isotopic analysis at the BCO and from aboard four ships.In addition, three ships collected seawater for isotopic analysis. All told,the in situ data span the period 5 January–22 February 2020 andcover the approximate area 6 to 16∘ N and 50 to 60∘ W,with water vapor isotope ratios measured from a few meters above sea levelto the mid-free troposphere and seawater samples spanning the ocean surfaceto several kilometers depth. This paper describes the full EUREC4A isotopic in situ data collection– providing extensive information about sampling strategies and datauncertainties – and also guides readers to complementary remotely sensedwater vapor isotope ratios. All field data have been made publicly availableeven if they are affected by known biases, as is the case for high-altitudeaircraft measurements, one of the two BCO ground-based water vapor timeseries, and select rain and seawater samples from the ships. Publication ofthese data reflects a desire to promote dialogue around improving waterisotope measurement strategies for the future. The remaining, high-qualitydata create unprecedented opportunities to close water isotopic budgets andevaluate water fluxes and their influence on cloudiness in the trade-windenvironment. The full list of dataset DOIs and notes on data quality flagsare provided in Table 3 of Sect. 5 (“Data availability”).

     
    more » « less
  3. Abstract The ocean has recently taken centre stage in the global geopolitical landscape. Despite rising challenges to the effectiveness of multilateralism, attention to ocean issues appears as an opportunity to co-create pathways to ocean sustainability at multiple levels. The ocean science community, however, is not sufficiently well organised to advance these pathways and provide policy input. The Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services demonstrate how knowledge consensus and integration have been instrumental in charting global pathways and eliciting commitments to address, respectively, climate change and biodiversity loss. An equally impactful global platform with a thematic focus on ocean sustainability is needed. Here we introduce the International Panel for Ocean Sustainability (IPOS) as a coordinating mechanism to integrate knowledge systems to forge a bridge across ocean science-policy divides collectively. The IPOS will enrich the global policy debate in the Ocean Decade and support a shift toward ocean sustainability. 
    more » « less
  4. Lumpkin, Rick (Ed.)